Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.104
Filtrar
1.
Nutr Diabetes ; 14(1): 23, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653987

RESUMO

BACKGROUND: The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS: Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS: The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION: NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Dinaminas , Mononucleotídeo de Nicotinamida , Oócitos , Espécies Reativas de Oxigênio , Animais , Camundongos , Feminino , Oócitos/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Superóxido Dismutase-1 , Dano ao DNA/efeitos dos fármacos , Estreptozocina , Oogênese/efeitos dos fármacos
2.
Free Radic Biol Med ; 208: 361-370, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625658

RESUMO

Aging-associated histone modification changes in oocytes have been sporadically reported, but the underlying mechanisms remain elusive. Here, we systematically characterize multiple histone modifications in oocytes during aging. We find that maternal and postovulatory aging markedly alter the status of histone modifications, specifically H4K12ac and H3K4me3, in both mouse and porcine oocytes. Meanwhile, we identify a substantial reduction in HDAC1 (histone deacetylase 1) protein in aged oocytes, which contributes to the changes in H4K12ac and H3K4me3. Moreover, by employing methylglyoxal (MG) and site-directed mutagenesis, we demonstrate that the elevated reactive carbonyl species (RCS) level induces HDAC1 degradation, likely through attacking the cysteine residues, thereby influences histone modification state. Importantly, supplementation of melatonin not only prevents the loss of HDAC1 protein, but also partially corrects the H4K12ac and H3K4me3 status in aged oocytes. To sum up, this study established the link between redox disequilibrium and histone modification alterations during mammalian oocyte aging.


Assuntos
Histona Desacetilase 1 , Melatonina , Oócitos , Animais , Camundongos , Alquilação , Código das Histonas/efeitos dos fármacos , Histonas/genética , Histonas/metabolismo , Mamíferos/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Suínos , Histona Desacetilase 1/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Envelhecimento/metabolismo
3.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446601

RESUMO

Melatonin has profound antioxidant activity and numerous functions in humans as well as in livestock and poultry. Additionally, melatonin plays an important role in regulating the biological rhythms of animals. Combining melatonin with scientific breeding management has considerable potential for optimizing animal physiological functions, but this idea still faces significant challenges. In this review, we summarized the beneficial effects of melatonin supplementation on physiology and reproductive processes in cattle, including granulosa cells, oocytes, circadian rhythm, stress, inflammation, testicular function, spermatogenesis, and semen cryopreservation. There is much emerging evidence that melatonin can profoundly affect cattle. In the future, we hope that melatonin can not only be applied to cattle, but can also be used to safely and effectively improve the efficiency of animal husbandry.


Assuntos
Criação de Animais Domésticos , Cruzamento , Bovinos , Melatonina , Animais , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Criação de Animais Domésticos/métodos , Cruzamento/métodos , Suplementos Nutricionais , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/fisiologia , Melatonina/farmacologia , Melatonina/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Reprodução/efeitos dos fármacos , Reprodução/fisiologia
4.
Zygote ; 31(5): 411-419, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37337712

RESUMO

MicroRNAs (miRNAs) are small non-encoding RNAs that actively regulate biological and physiological processes, and play an important role in regulating gene expression in all cells, especially in most animal cells, including oocytes and embryos. The expression of miRNAs at the right time and place is crucial for the oocyte's maturation and the embryo's subsequent development. Although assisted reproductive techniques (ART) have helped to solve many infertility problems, they cause changes in the expression of miRNA and genes in oocytes and preimplantation embryos, and the effect of these changes on the future of offspring is unknown, and has caused concerns. The relevant genomic alterations commonly imposed on embryos during cryopreservation may have potential epigenetic risks. Understanding the biological functions of miRNAs in frozen maturated oocytes may provide a better understanding of embryonic development and a comparison of fertility conservation in female mammals. With the development of new techniques for genomic evaluation of preimplantation embryos, it has been possible to better understand the effects of ART. The results of various articles have shown that freezing of oocytes and the cryopreservation method are effective for the expression of miRNAs and, in some cases, cause changes in the expression of miRNAs and epigenetic changes in the resulting embryo. This literature review study aimed to investigate the effects of oocyte cryopreservation in both pre-maturation and post-maturation stages, the cryopreservation method and the type of cryoprotectants (CPA) used on the expression of some epigenetic-related genes and miRNAs.


Assuntos
Criopreservação , MicroRNAs , Oócitos , Oócitos/citologia , Oócitos/efeitos dos fármacos , MicroRNAs/química , Técnicas Reprodutivas , Crioprotetores/farmacologia , Epigenômica , Humanos , Animais
5.
Biol Trace Elem Res ; 201(9): 4518-4529, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37043110

RESUMO

In this study, we reported boric acid's protective effects on the quality of nonylphenol (NP)-exposed oocytes. Female rats were classified into 4 groups: control, boric acid, NP, and NP+boric acid. Histopathological studies and immunohistochemical analysis of anti-müllerian hormone (AMH), mechanistic target of rapamycin (mTOR), Sirtuin1 (SIRT1), stem cell factor (SCF) studies were done. The comet assay technique was utilized for DNA damage. The ELISA method was used to determine the concentrations of oxidative stress indicators (SOD, CAT, and MDA), ovarian hormone (INH-B), and inflammation indicators (IL-6 and TNF-α). Boric acid significantly reduced the histopathological alterations and nearly preserved the ovarian reserve. With the restoration of AMH and SCF, boric acid significantly improved the ovarian injury. It downregulated SIRT1 and upregulated the mTOR signaling pathway. It provided DNA damage protection. Ovarian SOD, CAT levels were decreased by boric acid. Boric acid co-administration significantly reduced NP's MDA, IL-6, and TNF-activities. This results imply that boric acid has a protective role in ovarian tissue against NP-mediated infertility.


Assuntos
Ácidos Bóricos , Suplementos Nutricionais , Oócitos , Fenóis , Animais , Feminino , Ratos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo , Ácidos Bóricos/farmacologia , Fenóis/toxicidade , Exposição Ambiental/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Zygote ; 31(1): 14-24, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36683392

RESUMO

This study investigated the effect of the flavonoid-based compound isorhamnetin (ISO) on maturation and developmental competence in oxidative stress-exposed porcine oocytes in vitro. Treatment with 2 µM ISO (2 ISO) increases the developmental rate of oxidative stress-exposed porcine oocytes during in vitro maturation (IVM). The glutathione level and mRNA expression of antioxidant-related genes (NFE2L2 and SOD2) were increased in the 2 ISO-treated group, whereas the reactive oxygen species level was decreased. Treatment with 2 ISO increased mRNA expression of a cumulus cell expansion-related gene (SHAS2) and improved chromosomal alignment. mRNA expression of maternal genes (CCNB1, MOS, BMP15 and GDF9) and mitogen activated protein kinase (MAPK) activity were increased in the 2 ISO-treated group. The total cell number per blastocyst and percentage of apoptotic cells were increased and decreased in the 2 ISO-treated group, respectively. Treatment with 2 ISO increased mRNA expression of development-related genes (SOX2, NANOG, and POU5F1) and anti-apoptotic genes (BCL2L1 and BIRC5) and decreased that of pro-apoptotic genes (CASP3 and FAS). These results demonstrate that 2 ISO improves the quality of porcine oocytes by protecting them against oxidative stress during IVM and enhances subsequent embryo development in vitro. Therefore, we propose that ISO is a useful supplement for IVM of porcine oocytes.


Assuntos
Desenvolvimento Embrionário , Técnicas de Maturação in Vitro de Oócitos , Oócitos , Estresse Oxidativo , Animais , Blastocisto/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos
7.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552860

RESUMO

Several endocrine signals mediate mosquito egg development, including 20-hydroxyecdysone (20E). This study reports on prostaglandin E2 (PGE2) as an additional, but core, mediator of oogenesis in a human disease-vectoring mosquito, Aedes albopictus. Injection of aspirin (an inhibitor of cyclooxygenase (COX)) after blood-feeding (BF) inhibited oogenesis by preventing nurse cell dumping into a growing oocyte. The inhibitory effect was rescued by PGE2 addition. PGE2 was found to be rich in nurse cells and follicular epithelium after BF. RNA interference (RNAi) treatments of PG biosynthetic genes, including PLA2 and two COX-like peroxidases, prevented egg development. Interestingly, 20E treatment significantly increased the expressions of PG biosynthetic genes, while the RNAi of Shade (which is a 20E biosynthetic gene) expression prevented inducible expressions after BF. Furthermore, RNAi treatments of PGE2 receptor genes suppressed egg production, even under PGE2. These results suggest that a signaling pathway of BF-20E-PGE2 is required for early vitellogenesis in the mosquito.


Assuntos
Aedes , Aspirina , Oócitos , Animais , Aedes/genética , Aspirina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oogênese/efeitos dos fármacos
8.
Proc Natl Acad Sci U S A ; 119(21): e2015576119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35576466

RESUMO

Pheromones exchanged by conspecifics are a major class of chemical signals that can alter behavior, physiology, and development. In particular, males and females communicate with potential mating partners via sex pheromones to promote reproductive success. Physiological and developmental mechanisms by which pheromones facilitate progeny production remain largely enigmatic. Here, we describe how a Caenorhabditis elegans male pheromone, ascr#10, improves the oogenic germline. Before most signs of aging become evident, C. elegans hermaphrodites start producing lower-quality gametes characterized by abnormal morphology, increased rates of chromosomal nondisjunction, and higher penetrance of deleterious alleles. We show that exposure to the male pheromone substantially ameliorates these defects and reduces embryonic lethality. ascr#10 stimulates proliferation of germline precursor cells in adult hermaphrodites. Coupled to the greater precursor supply is increased physiological germline cell death, which is required to improve oocyte quality in older mothers. The hermaphrodite germline is sensitive to the pheromone only during a time window, comparable in duration to a larval stage, in early adulthood. During this period, prereproductive adults assess the suitability of the environment for reproduction. Our results identify developmental events that occur in the oogenic germline in response to a male pheromone. They also suggest that the opposite effects of the pheromone on gamete quality and maternal longevity arise from competition over resource allocation between soma and the germline.


Assuntos
Caenorhabditis elegans , Senescência Celular , Oócitos , Oogênese , Atrativos Sexuais , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Feminino , Masculino , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Atrativos Sexuais/farmacologia , Atrativos Sexuais/fisiologia
9.
Environ Toxicol ; 37(7): 1803-1813, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35363429

RESUMO

Several studies demonstrate that para-phenylenediamine (PPD) is often added to permanent oxidative hair dyes. Sub-chronic topical exposure to PPD in male rats damages their testicular function; however, little is known about the effects of PPD exposure on the female reproductive system, especially on oocyte quality. In this study, we found that PPD can affect the meiotic capacity of oocytes and their fertilization potential. In particular, PPD can damage the spindle/chromosome structure and prevent oocytes from developing and maturing normally. Furthermore, PPD exposure compromised the dynamics of cortical granules and their component, ovastacin. In addition to the protein level of Juno, the sperm receptors on the egg membrane, were substantially impaired in PPD-administered oocytes, thus leading to fertilization failure. Finally, we found that PPD exposure resulted in abnormal mitochondrial function, which led to oocyte degeneration, apoptosis, and increased ROS levels. Altogether, our study illustrates that mitochondrial dysfunction and redox perturbation are the major causes of the poor quality of oocytes exposed to PPD.


Assuntos
Meiose , Mitocôndrias , Oócitos , Fenilenodiaminas , Animais , Feminino , Tinturas para Cabelo/toxicidade , Masculino , Mitocôndrias/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Fenilenodiaminas/toxicidade , Ratos , Espécies Reativas de Oxigênio/metabolismo
10.
BMC Pregnancy Childbirth ; 22(1): 172, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236312

RESUMO

BACKGROUND: There is insufficient evidence regarding the impact of dual trigger on oocyte maturity and reproductive outcomes in high responders. Thus, we aimed to explore the effect of gonadotropin-releasing hormone agonist (GnRHa) trigger alone or combined with different low-dose human chorionic gonadotropin (hCG) regimens on rates of oocyte maturation and cumulative live birth in high responders who underwent a freeze-all strategy in GnRH antagonist cycles. METHODS: A total of 1343 cycles were divided into three groups according to different trigger protocols: group A received GnRHa 0.2 mg (n = 577), group B received GnRHa 0.2 mg and hCG 1000 IU (n = 403), and group C received GnRHa 0.2 mg and hCG 2000 IU (n = 363). RESULTS: There were no significant differences in age, body mass index, and rates of oocyte maturation, fertilization, available embryo, and top-quality embryo among the groups. However, the incidence of moderate to severe ovarian hyperstimulation syndrome (OHSS) was significantly different among the three groups (0% in group A, 1.49% in group B, and 1.38% in group C). For the first frozen embryo transfer (FET) cycle, there were no significant differences in the number of transferred embryos and rates of implantation, clinical pregnancy, live birth, and early miscarriage among the three groups. Additionally, the cumulative ongoing pregnancy rate and cumulative live birth rate were not significantly different among the three groups. Similarly, there were no significant differences in gestational age, birth weight, birth height, and the proportion of low birth weight among subgroups stratified by singleton or twin. CONCLUSIONS: GnRHa trigger combined with low-dose hCG (1000 IU or 2000 IU) did not improve oocyte maturity and embryo quality and was still associated with an increased risk of moderate to severe OHSS. Therefore, for high responders treated with the freeze-all strategy, the single GnRHa trigger is recommended for final oocyte maturation, which can prevent the occurrence of moderate to severe OHSS and obtain satisfactory pregnancy and neonatal outcomes in subsequent FET cycles.


Assuntos
Gonadotropina Coriônica/administração & dosagem , Fármacos para a Fertilidade Feminina/administração & dosagem , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/agonistas , Oócitos/efeitos dos fármacos , Síndrome de Hiperestimulação Ovariana/induzido quimicamente , Adulto , Gonadotropina Coriônica/efeitos adversos , Criopreservação , Transferência Embrionária/métodos , Feminino , Fármacos para a Fertilidade Feminina/efeitos adversos , Fertilização In Vitro/métodos , Antagonistas de Hormônios/administração & dosagem , Humanos , Gravidez , Resultado da Gravidez , Taxa de Gravidez , Estudos Retrospectivos
11.
Oxid Med Cell Longev ; 2022: 7113793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237383

RESUMO

α-Ketoglutarate (α-KG) is a metabolite in the tricarboxylic acid cycle. It has a strong antioxidant function and can effectively prevent oxidative damage. Previous studies have shown that α-KG exists in porcine follicles, and its content gradually increases as the follicles grow and mature. However, the potential mechanism of supplementation of α-KG on porcine oocytes during in vitro maturation (IVM) has not yet been reported. The purpose of this study was to explore the effect of α-KG on the early embryonic development of pigs and the mechanisms underlying these effects. We found that α-KG can enhance the development of early pig embryos. Adding 20 µM α-KG to the in vitro culture medium significantly increased the rate of blastocyst formation and the total cell number. Compared with to that of the control group, apoptosis in blastocysts of the supplement group was significantly reduced. α-KG reduced the production of reactive oxygen species and glutathione levels in cells. α-KG not only improved the activity of mitochondria but also inhibited the occurrence of apoptosis. After supplementation with α-KG, pig embryo pluripotency-related genes (OCT4, NANOG, and SOX2) and antiapoptotic genes (Bcl2) were upregulated. In terms of mechanism, α-KG activates the Nrf2/ARE signaling pathway to regulate the expression of antioxidant-related targets, thus combating oxidative stress during the in vitro culture of oocytes. Activated Nrf2 promotes the transcription of Bcl2 genes and inhibits cell apoptosis. These results indicate that α-KG supplements have a beneficial effect on IVM by regulating oxidative stress during the IVM of porcine oocytes and can be used as a potential antioxidant for IVM of porcine oocytes.


Assuntos
Antioxidantes/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Ácidos Cetoglutáricos/farmacologia , Meiose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Blastocisto/metabolismo , Meios de Cultura/química , Suplementos Nutricionais , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Glutationa/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Mitocôndrias/metabolismo , Oócitos/efeitos dos fármacos , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Suínos
12.
Sci Rep ; 12(1): 2706, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177721

RESUMO

Intracytoplasmic sperm injection (ICSI) is an effective reproductive technique for obtaining rat offspring using preserved sperm with low or no motility. However, rat oocytes undergo spontaneous activation immediately after retrieval from the oviduct and poorly develop after ICSI unless it is performed quickly. Here, we evaluated whether treatment with MG132, the proteasome inhibitor, suppresses the spontaneous activation of oocytes before and during ICSI. After retrieval from the oviducts, the rate of development into morula and blastocyst from the oocytes cultured in vitro for 1 h prior to ICSI significantly decreased compared with that from the control oocytes subject to ICSI without culture (7% versus 36%). However, a higher proportion of oocytes treated with MG132 for 0, 1, and 3 h before and during ICSI developed into morulae and blastocysts (70%, 60%, and 52%, respectively). Offspring were obtained from oocytes treated with MG132 for 0 and 1 h before and during ICSI (percentage: 31%). Altogether, MG132 could suppress the spontaneous activation of rat oocytes and increase embryonic development after ICSI.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Leupeptinas/farmacologia , Leupeptinas/uso terapêutico , Oócitos/efeitos dos fármacos , Injeções de Esperma Intracitoplásmicas/métodos , Animais , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/uso terapêutico , Cromossomos/efeitos dos fármacos , Feminino , Masculino , Oócitos/citologia , Ratos Wistar , Injeções de Esperma Intracitoplásmicas/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Fatores de Tempo
13.
Biochem Biophys Res Commun ; 598: 9-14, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35149434

RESUMO

The identification of novel peptides that regulate reproduction is essential for studying reproductive physiology in bivalves. Therefore, we aimed to identify peptides that affect the reproductive physiology of bivalves. We identified an oocyte maturation-, sperm motility-, and spawning-inducing peptide from the visceral ganglia of the pen shell, Atrina pectinata. The peptide consisted of 26 amino acid residues (GFDSINFPGTIDGFKDYSSNKKERLL). This peptide induced oocyte maturation and sperm motility activation at less than 1 nM upon the treatment of gonad fragments and induced spawning at 1 nmol when injected into mature individuals. Mature eggs and sperms artificially spawned by peptide administration were fertilized, and we confirmed that the development proceeded normally to veliger (D-shape) larvae. These results indicated that GFDSINFPGTIDGFKDYSSNKKERLL stimulated the gonads of pen shells and induced oocyte maturation, sperm motility activation, and spawning.


Assuntos
Bivalves/química , Bivalves/fisiologia , Oócitos/efeitos dos fármacos , Peptídeos/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Animais , Bivalves/efeitos dos fármacos , Clonagem Molecular , Feminino , Gânglios dos Invertebrados/química , Masculino , Oócitos/fisiologia , Ovário/efeitos dos fármacos , Peptídeos/química , Peptídeos/genética , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Espectrometria de Massas em Tandem , Testículo/efeitos dos fármacos
14.
Theranostics ; 12(2): 782-795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976213

RESUMO

Rationale: Polycystic ovary syndrome (PCOS) is closely linked to follicular dysplasia and impaired bidirectional oocyte-granulosa cell (GC) communication. Given that PCOS is a heterogeneous, multifactorial endocrine disorder, it is important to clarify the pathophysiology of this ovarian disease and identify a specific treatment. Methods: We generated PCOS rat models based on neonatal tributyltin (TBT) exposure and studied the therapeutic effect and mechanism of resveratrol (RSV), a natural plant polyphenol. Transcriptome analysis was conducted to screen the significantly changed pathways, and a series of experiments, such as quantitative real-time polymerase chain reaction (PCR), Western blot and phalloidin staining, were performed in rat ovaries. We also observed similar changes in human PCOS samples using Gene Expression Omnibus (GEO) database analysis and quantitative real-time PCR. Results: We first found that injury to transzonal projections (TZPs), which are specialized filopodia that mediate oocyte-GC communication in follicles, may play an important role in the etiology of PCOS. We successfully established PCOS rat models using TBT and found that overexpressed calcium-/calmodulin-dependent protein kinase II beta (CaMKIIß) inhibited TZP assembly. In addition, TZP disruption and CAMK2B upregulation were also observed in samples from PCOS patients. Moreover, we demonstrated that RSV potently ameliorated ovarian failure and estrus cycle disorder through TZP recovery via increased cytoplasmic calcium levels and excessive phosphorylation of CaMKIIß. Conclusions: Our data indicated that upregulation of CaMKIIß may play a critical role in regulating TZP assembly and may be involved in the pathogenesis of PCOS associated with ovarian dysfunction. Investigation of TZPs and RSV as potent CaMKIIß activators provides new insight and a therapeutic target for PCOS, which is helpful for improving female reproduction.


Assuntos
Comunicação Celular/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Síndrome do Ovário Policístico/tratamento farmacológico , Pseudópodes/efeitos dos fármacos , Resveratrol/uso terapêutico , Adulto , Animais , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Feminino , Células da Granulosa/metabolismo , Humanos , Oócitos/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/metabolismo , Pseudópodes/metabolismo , Ratos , Ratos Sprague-Dawley , Compostos de Trialquitina
15.
Toxicol Appl Pharmacol ; 436: 115882, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016910

RESUMO

Oocyte maturation is essential for fertilization and early embryo development, and proper organelle functions guarantee this process to maintain high-quality oocytes. The type B trichothecene nivalenol (NIV) is a mycotoxin produced by Fusarium oxysporum and is commonly found in contaminated food. NIV intake affect growth, the immune system, and the female reproductive system. Here, we investigated NIV toxicity on mouse oocyte quality. Transcriptome analysis results showed that NIV exposure altered the expression of multiple genes involved in spindle formation and organelle function in mouse oocytes, indicating its toxicity on mouse oocyte maturation. Further analysis indicated that NIV exposure disrupted spindle structure and chromosome alignment, possibly through tubulin acetylation. NIV exposure induced aberrant mitochondria distribution and reduced mitochondria number, mitochondria membrane potential (MMP), and ATP levels. In addition, NIV caused the abnormal distribution of the Golgi apparatus and altered the expression of the vesicle trafficking protein Rab11. ER distribution was also disturbed under NIV exposure, indicating the effects of NIV on protein modification and transport in oocytes. Thus, our results demonstrated that NIV exposure affected spindle structure and organelles function in mouse oocytes.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Organelas/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Tricotecenos/efeitos adversos , Acetilação/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Cromossomos/efeitos dos fármacos , Feminino , Meiose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Micotoxinas/efeitos adversos , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Organelas/metabolismo , Fuso Acromático/metabolismo , Transcriptoma/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
16.
Fish Physiol Biochem ; 48(1): 227-239, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35066792

RESUMO

Present study demonstrates that conspecific vitellogenin1 (CFVg1) induces oocyte maturation in the catfish, Clarias batrachus. CFVg1 is able to develop fertilizable eggs in the Clarias batrachus. Therefore, different in vitro oocyte culture experiments were designed to see whether CFVg1 has efficacy of oocyte maturation and its pathway. In in vitro oocyte culture experiment, CFVg1 showed a dose- and time-dependent response and 64% maturation was obtained at the dose level of 10 µg/ml or more. CFVg1 induction of oocyte maturation was confirmed by co-incubating CFVg1 with CFVg1-antiserum (a-CFVg1), which inhibited the CFVg1-induced oocyte maturation. To answer issues lead to the understanding of the mechanism of vitellogenin (Vg) on oocyte maturation, trypsin digested CFVg1 and Indian major carp Cirhinus mrigala Vg HAI (Hydroxy appetite peak I) also showed significant level of maturation. Actinomycin-D and cycloheximide blocked the effect of CFVg1, indicating that CFVg1 acts through transcription and translation. Theophylline, the phosphodiesterase inhibitor, and cAMP also inhibited the stimulatory effect of CFVg1 on oocyte maturation, indicating indirectly that CFVg1-induced oocyte maturation by decreasing the intracellular cAMP possibly by activating the phosphodiesterase enzyme. Trilostane, the 3ß-HSD-blocker, did not inhibit the CFVg1-induced oocyte maturation but wortmannin and Ly294002 two mechanistically different specific inhibitors of PI3 kinase blocked the oocyte maturation. The results thus indicate that oocyte maturation in catfish by Vg may be regulated by two pathways: (1) through decreasing the intraoocyte cAMP level by activating the cAMP-PKA pathway and (2) by cAMP-dependent PI3K/Akt pathway. Therefore, there might be role of vitellogenin itself in initiation of oocyte maturation.


Assuntos
Peixes-Gato , Oócitos , Vitelogeninas , Animais , AMP Cíclico , Oócitos/efeitos dos fármacos , Inibidores de Fosfodiesterase , Inibidores de Fosfoinositídeo-3 Quinase , Vitelogeninas/farmacologia
17.
J Ovarian Res ; 15(1): 11, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057828

RESUMO

BACKGROUND: Melatonin, as a free radical scavenger exhibiting genomic actions, regulates the antioxidant genes expression and apoptosis mechanisms. In polycystic ovary syndrome (PCOS) patients, an imbalance between free radicals and antioxidants in follicular fluid leads to oxidative stress, aberrant folliculogenesis, and intrinsic defects in PCOS oocytes. In this experimental mouse model study, oocytes of PCOS and the control groups were cultured in different melatonin concentrations (10- 5, 10- 6, and 10- 7 M) to investigate the expression of oocyte maturation-related genes (Gdf9/Bmp15), antioxidant-related genes (Gpx1/Sod1), apoptotic biomarkers (Bcl2/Bax) and total intracellular ROS levels. RESULTS: Gdf9 and Bmp15, Gpx1 and Sod1 were up-regulated in PCOS and control oocytes cultured in all melatonin concentrations compared to those cultured in IVM basal medium (P < 0.05). A significant decrease in the total ROS level was observed in all groups cultured in the supplemented cultures. Melatonin increased Bcl2 and decreased Bax gene expression in PCOS and control oocytes compared to non-treated oocytes. CONCLUSIONS: Melatonin increased antioxidant gene expression and regulated the apoptosis pathway, effectively reducing the adverse effects of culture conditions on PCOS oocytes. Furthermore, it influenced the expression of oocyte maturation-related genes in PCOS, providing valuable support during the IVM process.


Assuntos
Antioxidantes/metabolismo , Melatonina/farmacologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteína Morfogenética Óssea 15/genética , Desidroepiandrosterona/toxicidade , Modelos Animais de Doenças , Feminino , Glutationa Peroxidase/genética , Fator 9 de Diferenciação de Crescimento/genética , Técnicas de Maturação in Vitro de Oócitos , Camundongos , Oócitos/metabolismo , Oogênese/genética , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/genética , Proteína X Associada a bcl-2/genética , Glutationa Peroxidase GPX1
18.
Genes (Basel) ; 13(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35052481

RESUMO

Bisphenol A (BPA) and its analogs, bisphenol S (BPS) and bisphenol F (BPF), might impact fertility by altering oxidative stress pathways. Here, we hypothesize that bisphenols-induced oxidative stress is responsible for decreased gamete quality. In both female (cumulus-oocyte-complexes-COCs) and male (spermatozoa), oxidative stress was measured by CM-H2DCFDA assay and key ROS scavengers (SOD1, SOD2, GPX1, GPX4, CAT) were quantified at the mRNA and protein levels using qPCR and Western blot (COCs)/immunofluorescence (sperm). Either gamete was treated in five groups: control, vehicle, and 0.05 mg/mL of BPA, BPS, or BPF. Our results show elevated ROS in BPA-treated COCs but decreased production in BPS- and BPF-treated spermatozoa. Additionally, both mRNA and protein expression of SOD2, GPX1, and GPX4 were decreased in BPA-treated COCs (p < 0.05). In sperm, motility (p < 0.03), but not morphology, was significantly altered by bisphenols. SOD1 mRNA expression was significantly increased, while GPX4 was significantly reduced. These results support BPA's ability to alter oxidative stress in oocytes and, to a lesser extent, in sperm. However, BPS and BPF likely act through different mechanisms.


Assuntos
Antioxidantes/metabolismo , Compostos Benzidrílicos/farmacologia , Oócitos/efeitos dos fármacos , Estresse Oxidativo , Fenóis/farmacologia , Espermatozoides/efeitos dos fármacos , Sulfonas/farmacologia , Animais , Bovinos , Feminino , Sequestradores de Radicais Livres/farmacologia , Masculino , Oócitos/metabolismo , Espermatozoides/metabolismo
19.
Reprod Biol Endocrinol ; 20(1): 18, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073905

RESUMO

BACKGROUND: In vitro maturation (IVM) of oocytes is a laboratory method that allows the maturation of immature (GV) oocytes retrieved from patients enrolled in the in vitro fertilization (IVF) programme. However, this method is still sparsely researched and used in clinical practice, leading to suboptimal clinical results. Anti-Müllerian hormone (AMH) is an important hormone with known effects on human ovaries, especially on follicles (follicular cells) during folliculogenesis. In contrast, the effect of AMH on the human oocyte itself is unknown. Therefore, we wanted to determine whether human oocytes express AMH receptor 2 (AMHR2) for this hormone. Recombinant AMH was added to the IVM medium to determine whether it affected oocyte maturation. METHODS: In total, 247 human oocytes (171 immature and 76 mature) were collected from patients enrolled in the intracytoplasmic sperm injection (ICSI) programme who were aged 20 to 43 years and underwent a short antagonist protocol of ovarian stimulation. The expression of AMHR2 protein and AMHR2 gene was analysed in immature and mature oocytes. Additionally, maturation of GV oocytes was performed in vitro in different maturation media with or without added AMH to evaluate the effect of AMH on the oocyte maturation rate. RESULTS: Immunocytochemistry and confocal microscopy revealed that AMHR2 protein is expressed in both immature and mature human oocytes. AMHR2 was expressed in a spotted pattern throughout the whole oocyte. The IVM procedure revealed that AMH in maturation medium improved GV oocyte maturation in vitro, as all oocytes were successfully matured in maturation medium containing recombinant AMH only. Furthermore, antagonism between AMH and follicle-stimulating hormone (FSH) during the maturation process was observed, with fewer oocytes maturing when both AMH and FSH were added to the maturation medium. Finally, AMHR2 gene expression was found in immature and in vitro matured oocytes but absent in mature oocytes. CONCLUSIONS: The positive AMHR2 protein and AMHR2 gene expression in human oocytes shows that AMH could directly act on human oocytes. This was further functionally confirmed by the IVM procedure. These findings suggest the potential clinical application of recombinant AMH to improve IVM of human oocytes in the future.


Assuntos
Hormônio Antimülleriano/farmacologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/efeitos dos fármacos , Adulto , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Oócitos/citologia , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Indução da Ovulação/métodos , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Recombinantes/farmacologia , Adulto Jovem
20.
J Assist Reprod Genet ; 39(1): 107-116, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35022896

RESUMO

PURPOSE: Nucleoporin 37 (NUP37) has been reported to activate the YAP-TEAD signaling, which is crucial for early embryo development. However, whether NUP37 is involved in oocyte meiosis and embryo development remains largely unknown. The study aimed to clarify the function of Nup37 in oocyte maturation and early embryo development, and to explore the mechanism. METHODS: The expression level and subcellular localization of NUP37 were explored. After knocking down of Nup37 by microinjecting interfering RNA (siRNA), the oocyte maturation rate, aberrant PB1 extrusion rate, and blastocyst formation rate were evaluated. In addition, the effect of the downregulation of Nup37 on YAP-TEAD signaling was confirmed by immunofluorescence staining and real-time quantitative PCR. RESULTS: NUP37 was highly expressed in oocytes and early embryos; it mainly localized to the nuclear periphery at mice GV stage oocytes and early embryos. Nup37 depletion led to aberrant PB1 extrusion at the MII stage oocyte and a decreased blastocyst formation rate. The reduction of NUP37 caused YAP1 mislocalization and decreased the expression of Tead1, Tead2, and Tead4 during mice embryo development, thus affecting the YAP-TEAD activity and embryo developmental competence. CONCLUSIONS: In summary, NUP37 played an important role in mice oocyte maturation and preimplantation embryo development.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/farmacologia , Oócitos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Feminino , Modelos Logísticos , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...